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Abstract
Mangroves are often excluded when estimating carbon (C) from global and tropical forests. Therefore, C estimates of
global and tropical forests are likely to be underestimated. On the other hand, allometric biomass models and C stocks
estimates are lacking for juvenile mangrove trees (seedling and sapling), yet required for increasing of young succes-
sional mangrove forests as result of disturbances. In this study, allometric biomass models were fitted and ecosystem C
stock estimated for a juvenile secondary mangrove forest, using a non-destructive biomass sampling. Besides the
advantage of enforcing additivity and being least biased, the models fitted simultaneously using nonlinear seemingly
unrelated regression (NSUR) with parameter restriction were superior with regard to predictive accuracy and ability
compared to those fitted independently. The surface soil accounted for the majority of the ecosystem C stock (90%).
Aboveground biomass ranked next with 9.6% of the ecosystem C stock.
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Introduction

Mangroves are salt tolerant plants that grow within the
intertidal region between the sea and the land along trop-
ical and subtropical coasts. They are known to protect
coastlines from wave energy and protect offshore ecosys-
tems from terrestrial sediments flowing downstream
(Taylor et al. 2003). They provide habitat for over 1300
animal species and are one of the most productive ecosys-
tems (Fatoyinbo et al. 2008).

Mangroves are often excluded when estimating carbon
(C) stocks and carbon dioxide (CO2) emissions from
global and tropical forests (e.g. Pan et al. 2011; Baccini
et al. 2012; Ladd et al. 2012; Zarin 2012). Therefore, C
estimates of global and tropical forests are likely to be
underestimated. Recent studies (e.g. Donato et al. 2011;
Jachowski et al. 2013; Hamilton and Lovette 2015) have
shown that mangrove forest C storage per unit area is
approximately three to four times higher than that of other

tropical forests including rainforests, implying that the
deforestation of mangrove forests releases more CO2 per
unit area than other global forest types.

The global area of mangrove forests is estimated to be 14
Mha, distributed in 118 countries and territories in the tropical
and subtropical regions of the world (Geri et al. 2011). About
¾ of world’s mangroves are found in just 15 countries (Geri
et al. 2011). Mozambique is among the 15 most mangrove-
rich countries with 2.3% (318,851 ha) of world’s mangroves
area (Geri et al. 2011). In Africa, Mozambique has the second
largest area of mangrove, with 12% of the continent’s man-
grove area (FAO 2007).

At global level, mangrove forests are most at risk of
conversion to aquaculture, while non-mangrove tropical
forests are often converted to agriculture (Hamilton and
Lovette 2015). In Mozambique, where the coastal popu-
lation is about 2/3 of the total population (Hoguane 2007),
the overall deforestation rate of mangroves is estimated at
2.6% (Barbosa et al. 2001; Taylor et al. 2003), and con-
sidered to be relatively unaffected (Taylor et al. 2003)
compared to other countries. However, Maputo and
Beira cities (the two largest cities of Mozambique) have
experienced much mangrove deforestation for firewood,
charcoal, agriculture, salt production (Taylor et al.
2003), and most importantly, urban sprawl, thus having
a higher rate of deforestation (Barbosa et al. 2001).
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Mangroves of thewest coastline ofMaputo city have been
extremely devastated due to urban sprawl and other anthro-
pogenic uses such as firewood collection. To avoid total dev-
astation, the study area was set as a protected area by the
municipality of Maputo. The area is mainly composed by
seedlings and sampling of Avicennia marina (Forssk.)
Vierh. with a relative abundance >95% (Amade 2006).

Biomass models and estimates for juvenile trees (seedling
and sapling) are scarce in the literature (Annighöfer et al.
2016), as most published biomass models focus on larger trees
(DBH ≥ 10 cm). Yet, biomass estimates for seedlings and sap-
lings are required for increasing of young successional forests
as result of disturbances (Annighöfer et al. 2016) and to model
their future development and predict the dynamics in C cy-
cling of forests (Galik et al. 2009).

On the other hand, woody debris are an important for-
est ecosystem component as they provide information on
quality and status of wildlife habitats, structural diversity
within the forest, C sequestration, storage and cycling of
nutrients and water (Harmon et al. 1986; Husch et al.
2003). Wood debris are also very important for seedling
establishment, soil development, provision of habitat for
decomposers and heterotrophs and are a source of energy
and nutrients (Harmon and Hua 1991). Yet, they are a
neglected component of terrestrial and aquatic ecosystems
(Harmon et al. 1986) and a neglected C pool (Chao et al.
2008; Merganičová and Merganič 2010).

The objective of this study was to fit allometric biomass
models for each tree component and estimate the C stored in
biomass, necromass and in the soil of a secondary Mangrove
forest along the west coastline of Maputo city, in
Mozambique, southern Africa.

Material and Methods

Study Area

The study area (Fig. 1) is bounded by the meridians 32o37´30″
and 32o39´05″ eastern longitudes and parallels 25o54´15″ and
25o55´45′´southern latitudes in the west coastline of Maputo
city, Mozambique, occupying about 139 ha, and it is located
less than 250 m from sea.

The altitude of the study area varies from 1 to 8m above the
mean sea level; the climate is humid tropical (DINAGECA
1997). According to the United Nations Food and Agriculture
Organization (FAO) classification (FAO 2003), the soils of the
study area are Salic Fluvisols. The mean annual temperature
of Maputo city is approximately 23o C with a mean annual
minimum temperature of approximately 18o C and a mean
annual maximum temperatures ranging from 28 to 29 o C
(CMM 2010). The mean annual precipitation ranges from
633 to 916 mm (CMM 2010).

Data Acquisition and Analysis

Live Aboveground Biomass

Two-phase sampling design was used to estimate biomass and
carbon stocks. In the first phase, seventy two (72) 0.04 ha
(20 m × 20 m) random sampling plots were allocated in the
study area, comprising a sampling intensity of 2.1%. Within
the plots all trees with root collar diameter (RCD) ≥ 1 cmwere
measured for RCD, tree height (H), live crown length (LCL),
and crown radius and consequently crown diameter (CD).
Refer to Table 1 for summary statistics of the phase-1 data.
RCD was preferred over diameter at breast height (DBH)
because a considerable number of trees in the study area has
not achieved the breast height. RCD was measured using a
caliper or a caliper rule and the heights were measured using a
telescopic measuring pole or a ruler. Crown radius was mea-
sured using a right-angle prism densiometer and a tape, from
the centre of the trunk to the perimeter of the crown, in four
cardinal directions (North, South, East and West). CD was
computed as double of the geometric mean crown radius.

In the second phase, 2 to 6 trees representing all RCD
classes and all species found within each plot were selected
for non-destructive biomass measurement. Non-destructive
biomass measurement was preferred over destructive one be-
cause the study area is protected by the municipality of
Maputo. The stemwas divided into 5 segments equal in length
and the diameter of each segment was measured at the mid-
point. Length and three diameter measurements (on the bot-
tom, middle and top) were taken in each primary, secondary
and higher-order branch. The upper diameters and branches of
the tallest trees were measured with the aid of a step ladder.

The thickest primary branch was cut down from each
phase-2 tree using a pruning shear or a chainsaw and a basal
wood section of approximately 10–15 cm in length was col-
lected from the branch. The wood sections were dipped in
drums filled with water, until constant weight, for its satura-
tion and subsequent determination of the saturated volume
and basic density. Saturated volume was obtained based on
the water displacement method (Brasil et al. 1994). Wood
sections were oven dried at 105 °C to constant weight. Basic
density was obtained by dividing the oven-dry mass by the
relevant saturated volume (de Gier 1992; Bunster 2006).

Stem and branch volumes were computed using
Hohenadl’s and Newton formulae, respectively (Husch
et al. 2003; Magalhães and Seifert 2015), and their dry
masses were calculated by multiplying the volumes by the
basic wood density.

To estimate the foliage dry mass, additional to the cut
branch, 2 to 4 primary branches representing all size clas-
ses were selected and their leaves collected. The foliage of
each branch was oven-dried at 105 °C until their constant
mass, hereafter the dry mass measured. The foliage dry
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mass was up-scaled from the branch level to the tree level
by multiplying the weighted mean foliage dry mass per
branch (weighted by branch volume) by the total number
of primary branches of the tree.

The following tree biomass componentswere considered:
(1) stem, (2) branches, (3) foliage, (4) crown (2 + 3), and (5)
shoot system (1 + 4). Biomass models were fitted separately
for each tree biomass component. No species-specific
models were fitted because the study area is mainly com-
posed by Avicennia marina (Forssk.) Vierh. with a relative
abundance>95%.The summary statistics of the phase-2 data
are provided in Table 2. The phase-2 data (301 trees) were

split in training (227) and testing data (74), for model fitting
and validation, respectively.

Because biomass is a nonlinear function of the inde-
pendent variables (Ter-Mikaelian and Korzukhin 1997;
Schroeder et al. 1997; Bolte et al. 2004; de Jong and
Klinkhamer 2005; Salis et al. 2006), the models were
fitted using nonlinear least squares.

The following models were tested for all tree biomass com-
ponents

Y ¼ αRCDβ þ ε ð1Þ
Y ¼ αRCDβHγ þ ε ð2Þ

Additionally, the models belowwere also tested for foliage,
branches, crown and AGB

Y ¼ αRCDβLCLγ þ ε ð3Þ
Y ¼ αRCDβCDγ þ ε ð4Þ
where Y is aboveground or tree component biomass [Kg]; α,
β and γ are regression parameters and ε is the error term.

Models were fitted using the nls function of R software (R
Core Team 2016) and evaluated based on the following
goodness-of-fit statistics: Akaike information criterion (AIC;
Akaike 1973), mean residuals (MR [%]), coefficient of varia-
tion of residuals (CVr [%]), Furnival’s index of fit (FI;
Furnival 1961), and model prediction error (MPE). MPE

Fig. 1 Distribution of sampling plots in the study area

Table 1 Summary basic statistics of phase-1 data

Statistic RCD [cm] H [m] CD [m] LCL [m]

Minimum 1.00 0.20 0.26 0.05

Maximum 24.00 9.80 3.49 9.30

Average 6.63 1.35 0.83 0.68

SD 3.62 0.90 0.35 0.76

CV 54.64 66.51 42.48 111.59

SE 0.11 0.03 0.01 0.02

SE [%] 1.68 2.05 1.31 3.43

n 1056 1056 1056 1056

SD standard deviation, SE standard error, CV coefficient of variation,
n sample size
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was estimated for each model by K–fold cross-validation
(K = 10) using cvFit function from the package BcvTools^
(Alfons 2015) of R software (R Core Team 2016). Models
resulting in least and not significant MR, smallest AIC, CVr,
FI, and MPE were selected as the best.

Coefficient of determination (R2) was not used to evaluate
the performance of the models because it is inappropriate
when used for demonstrating the performance or validity of
nonlinear models (Spiess and Neumeyer 2010). This is be-
cause the regression sum-of-squares and the residual sum-of-
squares do not add up to total sum-of-squares as in linear least
squares, and thus R2 is no longer between 0 and 100%.

The biomass predictions from the minor tree component
models (e.g. foliage, branches, and stem) will not sum to those
from the major tree component models (e.g. crown, and shoot
system), not achieving biomass additivity, which is illogical. To
enforce additivity, new major component model forms were ob-
tained as a function of the predictors of the best minor compo-
nent models. The new major component model forms and the
best minor component model forms were fitted again, simulta-
neously, using nonlinear seemingly unrelated regression (NSUR)
with parameter restriction. NSUR with parameter restriction is
the most statistically sound method of enforcing the property of
additivity for nonlinear biomass models (Parresol 2001).

The simultaneous models (NSUR models) were fitted
using PROC MODEL statement of SAS software (SAS
Institute Inc. 1999), using the ITSUR option. Restrictions on
the regression coefficients were imposed by using RESTRICT
statement. The NSUR models were applied to phase-I data to
estimate plot and stand level biomass.

The biases resulting from the independently and simulta-
neously fitted models were determined by Eq. 5 using the
testing data.

Bias ¼ ∑PBk−∑OBk

∑PBk
� 100% ð5Þ

where PBk and OBk represent the predicted and observed
biomass, respectively, of the c component of the kth tree.

The biases were tested for significance usingWilcoxon signed
rank test. Further, Pearson’s correlation coefficient was used
to evaluate the degree of which the predicted biomass is asso-
ciated with observed biomass. All the analyses were per-
formed at 5% significance level.

All living stumps within the main plot were measured for
volume similarly to branches, and a disc removed on top of
it for the determination of basic density and dry mass as
done for branches. The dry mass of the stumps was obtained
by multiplying the volume of the stumps by mean basic
density of the sample stumps.

C stored in biomass was obtained as half of the dry mass
(IPCC 2003; Elias and Potvin 2003).

Necromass

In the North corner of each plot, a 5 m × 5 m subplot was
established for measurement of coarse woody debris (CWD),
defined here as the woody material ≥2.0 cm in diameter at the
wider end, regardless of the length. Fine wood debris (FWD,
woody material <2.0 cm in diameter at the wider end) and litter
were observed in a 1 m × 1 m quadrat established in the North
corner of the subplots. CWD were divided into standing and
fallen. Standing CWD comprised snags (standing dead trees)
and dead stumps. Fallen CWD comprised logs (fallen dead
trees), their attached and detached branches and other woody
parts detached from the tree that can be classified as coarse.

Snags and dead stumps were measured for dry mass simi-
larly to standing live trees and living stumps, respectively.
Fallen CWD were measured for fresh mass in the field and a
sample of 5–10% of the fresh mass (representing all size clas-
ses) was taken to the laboratory for oven-drying at 105 °C
until constant mass. The dry mass of the fallen CWD of each
subplot was obtained by multiplying the ratio of oven-dry- to
fresh-mass of the sample by the relevant total fresh mass.
FWD + litter were measured similarly to fallen CWD. The
dry masses of standing and fallen CWD were up-scaled to
per unit area measurements using the expansion factor [i.e.
the ratio of unit area (ha) to the subplot or quadrat area]. C

Table 2 Summary basic statistics of phase-2 data

Variables Minimum Maximum Average SD CV [%] SE SE [%] n

Dendrometric variables RCD [cm] 1.00 16.00 6.43 3.39 52.75 0.23 3.50 301

H [m] 0.30 7.00 1.41 1.08 76.31 0.07 5.07 301

CD [m] 0.27 3.18 0.88 0.44 50.32 0.03 3.34 301

LCL [m] 0.10 6.25 0.80 0.97 120.91 0.06 8.03 301

Dry mass [kg] Stem 4E – 03 106.15 11.74 18.96 161.54 1.23 10.72 301

Foliage 3E – 03 16.67 2.31 3.34 144.28 0.22 9.58 301

Branches 0.12 44.66 7.66 7.22 94.15 0.48 6.25 301

Crown 0.12 58.41 9.98 10.35 103.75 0.69 6.89 301

Shoot system 0.13 156.66 21.72 28.85 132.84 1.92 8.82 301
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stored in necromass was obtained as half of the dry mass
(IPCC 2003; Elias and Potvin 2003).

Soil

Soil samples, disturbed and undisturbed, were collected
within the 1 m × 1 m quadrats. Disturbed soil samples
for estimation of soil organic matter (SOM) content and
soil organic carbon (SOC) content [%] were collected
using a Dutch auger of 30 cm depth. Therefore, soils were
assessed to 30 cm depth from the ground level (0–30 cm
soil layer), following the minimum depth recommended
by IPCC (2006). After removing the litter, disturbed soil
samples were collected at each corner of each quadrat. A
homogenized subsample of the 4 samples was taken to the
laboratory for SOC and SOM content determination using
the Walkley-Black method (Pearson et al. 2005).

Soil samples for estimation of bulk density (undisturbed
soil cores) were collected in the centre of the quadrats using
a 100 cm3 volume corer (height: 51 mm, inner diameter:
50 mm). For each point (plot centre), undisturbed soils cores
were taken from three soil layers within the major layer (0–
30 cm): superficial layer (0–10 cm), intermediate layer (10–
20 cm), and deep layer (20–30 cm). Bulk density was calcu-
lated for every soil sample as the ratio of oven-dry soil mass to
the volume of the corer.

The SOC stock of the population was computed using Eq.
6 (Pearson et al. 2005; Zhou et al. 2007)

SOCStock ¼ D� B� O Mg ha–1
� � ð6Þ

where D is the soil depth interval [cm]; B and O are the mean
soil bulk density [g cm – 3] and the mean SOC content [%].

Results

The RCD of the phase-1 trees varied from 1 to 24 cm, while
that of phase-2 trees varied from 1 to 16 cm. Tree height (H)
varied from 0.2 to 9.8 m for phase-1 trees, and from 0.3 to
7.0 m for phase-2 (Tables 1 and 2). However, phase-1 trees
with RCD> 16 cm represented only 2% of the sampled trees;
and only 2 trees of the phase-1 were out of phase-2 height
range. Of the 1056 trees sampled during the phase-1 only 8
were from Rhizophora mucronata species, the rest were from
Avicennia marina. All of the phase-2 trees (331) were from
Avicennia marina species. Therefore, the phase-2 data were
representative of the phase-1 data.

Tables 3 and 4 give the regression parameters, and
goodness-of-fit statistics for the tested models, respectively.
The predictor H was not statistically significant for estimating
stem, and branches biomasses, and LCL and CD were not
significant for estimating foliage biomass (Table 3); the

inclusion of those predictors resulted in higher AIC and
MPE values (Table 4). But then, the inclusion of H and CD
in foliage and branches biomass models, respectively, resulted
in significantly lower AIC, FI, CVr values (i.e. improved pre-
dictive accuracy) and negligible changes in MPE (i.e. no sig-
nificant changes in predictive ability). Improved predictive
accuracy and ability was also observed for the crown and
AGB models when CD was included as a predictor.

Equation 1 (Ŷ = αRCDβ), Eq. 2 (Ŷ = αRCDβHγ), and
Eq. 4 (Ŷ = αRCDβCDγ) were selected as the best allome-
tric biomass models for stem, foliage, and branches, re-
spectively, based mainly on AIC, FI, and CVr, as MRs
were not found to be statistically different from zero
(Table 4) and MPE did not differ significantly between
models tested for same tree components.

Equation 4 (Ŷ =αRCDβCDγ) was also elected the best for
crown and AGB. However, as mentioned previously, the bio-
mass estimates from stem, foliage, and branches models will
not sum to that of AGB model. Similarly, the biomass esti-
mates from foliage, and branches models will not sum to that
of crown model. This compromises the property of additivity.

To achieve additivity, a new crown biomass model formwas
set up as a function of the predictors of the best foliage, and
branches model forms; and a new AGB model form was also
set up as a function of the predictors of the best stem, and the
new crown model forms. The new model forms (crown and
AGB) along with the previous selected model forms (stem,
foliage, and branches) were fitted again, simultaneously, using
NSUR with parameter restriction. The structural system of
model forms (to be fitted simultaneously) is given in Eq. 7.

ŶStem ¼ α1RCD
β1

ŶFoliage ¼ α2RCD
β2Hγ2

ŶBranches ¼ α3RCD
β3CDγ3

ŶCrown ¼ α2RCD
β2Hγ2 þ α3RCD

β3CDγ3

ŶAGB ¼ α1RCD
β1 þ α2RCD

β2Hγ2 þ α3RCD
β3CDγ3

ð7Þ

where ŶCrown and ŶAGB are restricted to have the same
predictors and regression parameters as the constituent
component models.

All the regression parameters of the simultaneously fitted
models were statistically significant (Table 5). By using the
NSUR approach, the predictive accuracy and ability of the
crown biomass and AGB models improved significantly
(Table 6) when compared to the previously selected indepen-
dent models: for the crown biomass model, AIC, FI, CVr, and
MPE had a decline of about 2, 7, 11, and 29%, respectively.
On the other hand, a decline of approximately 1, 6, 10, and
22% was observed for AGB model, respectively. A slight but
non-significant increase in AIC, FI, CVr, and MPE was ob-
served for the minor tree components models (stem, foliage,
branches) when fitted simultaneously.
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All the models, either independently or simultaneous-
ly fitted, were found to provide non-significant bias
(Table 7). The simultaneously predicted crown biomass
and AGB were strongly more correlated to observed
crown biomass, and AGB, respectively, than the inde-
pendently predicted ones (Table 8). Simultaneously pre-
dicted crown biomass, and AGB were 9 and 4% more

correlated to relevant observed biomasses than the inde-
pendently predicted ones.

Table 9 shows the tree component C stocks estimated
based on NSUR models, C stocks in necromass and the
SOC stock. The overall C stock was estimated at approximate-
ly 48 Mg ha – 1, of which 90% (43 Mg ha – 1) was from the
soil, 9.6% from live AGB, and 0.50% (0.22 Mg ha – 1) from

Table 3 Regression parameters
of independently fitted allometric
biomass models

Tree component Model form α (± SE) β (± SE) γ (± SE)

Stem Ŷ =αRCDβ 0.03 (± 0.01) 2.86 (± 0.09) –

Ŷ =αRCDβHγ 0.03 (± 0.01) 2.88 (± 0.11) – 0.01 (± 0.06)ns

Foliage Ŷ =αRCDβ 0.01 (± 3E – 03) 2.55 (± 0.09) –

Ŷ =αRCDβHγ 0.02 (± 4E – 03) 2.42 (± 0.11) 0.14 (± 0.06)

Y =αRCDβLCLγ 0.01 (± 4E – 03) 2.51 (± 0.10) 0.03 (± 0.04)ns

Ŷ =αRCDβCDγ 0.02 (± 4E – 03) 2.49 (± 0.10) 0.07 (± 0.05)ns

Branches Ŷ =αRCDβ 0.39 (± 0.07) 1.55 (± 0.08) –

Ŷ =αRCDβHγ 0.45 (± 0.09) 1.46 (± 0.10) 0.09 (± 0.07)ns

Ŷ =αRCDβLCLγ 0.50 (± 0.10) 1.44 (± 0.08) 0.11 (± 0.04)

Ŷ =αRCDβCDγ 0.64 (± 0.13) 1.32 (± 0.09) 0.29 (± 0.06)

Crown Ŷ =αRCDβ 0.29 (± 0.05) 1.81 (± 0.08) –

Ŷ =αRCDβHγ 0.34 (± 0.07) 1.71 (± 0.10) 0.11 (± 0.06)

Ŷ =αRCDβLCLγ 0.37 (± 0.08) 1.70 (± 0.09) 0.10 (± 0.04)

Ŷ =αRCDβCDγ 0.44 (± 0.09) 1.61 (± 0.09) 0.23 (± 0.06)

Shoot system Ŷ =αRCDβ 0.16 (± 0.03) 2.44 (± 0.08) –

Ŷ =αRCDβHγ 0.17 (± 0.04) 2.38 (± 0.10) 0.05 (± 0.06)ns

Ŷ =αRCDβLCLγ 0.16 (± 0.04) 2.43 (± 0.09) 0.01 (± 0.03)ns

Ŷ =αRCDβCDγ 0.19 (± 0.05) 2.34 (± 0.10) 0.10 (± 0.05)

SE, standard error; ns, not statistically significant

Table 4 Fit statistics and
predictive ability of
independently fitted allometric
biomass models

Tree component Model form AIC FI CVr [%] Mr [%] MPE

Stem Ŷ =αRCDβ 882.44 18.25 28.72 – 1.29ns 3.26

Ŷ =αRCDβHγ 884.41 18.25 28.72 – 1.27ns 3.37

Foliage Ŷ =αRCDβ 111.27 0.94 24.49 – 3.54ns 0.59

Ŷ =αRCDβHγ 108.34 0.93 23.90 – 3.46ns 0.61

Y =αRCDβLCLγ 112.64 0.94 24.42 – 3.66ns 0.60

Ŷ =αRCDβCDγ 111.37 0.93 24.26 – 3.66ns 0.60

Branches Ŷ =αRCDβ 606.75 18.03 19.00 – 0.66ns 2.27

Ŷ =αRCDβHγ 606.83 17.95 18.79 – 0.70ns 2.31

Ŷ =αRCDβLCLγ 601.60 17.75 18.23 – 0.69ns 2.30

Ŷ =αRCDβCDγ 588.52 17.24 16.86 – 1.26ns 2.28

Crown Ŷ =αRCDβ 713.11 27.31 17.57 – 0.40ns 2.79

Ŷ =αRCDβHγ 712.14 27.14 17.26 – 0.43ns 2.87

Ŷ =αRCDβLCLγ 708.58 26.92 16.89 – 0.55ns 2.85

Ŷ =αRCDβCDγ 699.35 26.38 15.95 – 1.01ns 2.82

Shoot system Ŷ =αRCDβ 1087.92 100.76 19.91 – 1.01ns 5.86

Ŷ =αRCDβHγ 1089.14 100.59 19.82 – 1.06ns 5.90

Ŷ =αRCDβLCLγ 1089.85 100.74 19.90 – 1.07ns 6.13

Ŷ =αRCDβCDγ 1086.00 99.89 19.48 – 1.36ns 5.94
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necromass. Mean soil bulk density was 1.22 g cm – 3 (± 0.03),
mean SOC content was 1.18% (± 0.07), and the SOM content
was 2.04% (± 0.13).

The C stored in live AGB was estimated at 4.56 Mg ha– 1,
with 57 (2.6 Mg ha – 1), 32 (1.5 Mg ha – 1), and 11%
(0.5 Mg ha – 1) allocated to stem, branches and foliage, re-
spectively. Live stumps accounted insignificantly to live
AGB. Approximately 93% (0.2 Mg ha – 1) of the C stored in
necromass was from FWD and litter, and about 7% from
CWD. The logs accounted for about 100% of the CWD.

Discussion

Non-destructive Biomass Sampling

The typical methods for measuring biomass and developing
biomass models require destructive sampling of trees.
Destructive biomass sampling is deemed the most accurate
method (Dong et al. 2016). In this study, the dry mass of the
stem and branches were determined non-destructively bymul-
tiplying their volumes by the basic density of a basal wood
section of the thickest primary branch. The basic density of the
basal wood section was taken as representative of the whole
tree, ignoring possible within tree variations.

The stem dry mass is normally calculated destructively
either as the product of stem volume and the basic density of
a disc(s) removed from the main stem (Magalhães and Seifert
2015; Magalhães 2015) or as a product of fresh mass and the
ratio of oven-dry- to fresh-mass of the disc(s) (Dong et al.
2016; Tran et al. 2016). The second method is also applied
to the branches.

However, while Swenson and Enquist (2008) sug-
gested that branch wood density is representative of stem
wood density, they found trunks to be denser than
branches. Sarmiento et al. (2011) observed that trunk xy-
lem is denser than branch xylem and Okai et al. (2004)
found otherwise. On the other hand, branches density has
been reported to decrease along crown level (Dibdiakova
and Vadla 2012). These factors may have led to an over-
or underestimation of the stem and branch biomasses.

Because the study was conducted in a protected area, where
destruction of trees is prohibited, non-destructive sampling
techniques are the only available for biomass estimation.
Other ground-based non-destructive biomass techniques in-
clude using (1) (imported) general biomass allometric models,
(2) mean literature values of basic wood density, (3) trunk
wood cores. Yet, the biomass estimates from this study are
expected to be much more accurate than when using
(imported) general biomass allometric models and/or mid-
values of published basic wood densities of specific species
as done by Stringer et al. (2015), since tree (biomass) allom-
etry varies with the environment (Anderson-Texeira et al.Ta
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2015; Siliprande et al. 2016; Sharma and Zhang 2004), tree
size, species, crowding by neighbours and exposure to light
and wind (King 2011). On the other hand, wood density is
known to vary substantially within the stem and between trees
and sites (Seifert and Seifert 2014). Thus, as maintained by
these authors, Bto base biomass upscaling merely on mean
literature values of basic density is a very crude approach that
might, due to density variations within and between trees, lead
to seriously biased estimates^. Using trunk wood cores (using
increment borer) to estimate tree biomass is not feasible for
smaller trees (e.g. with diameter < 4 cm).

Additivity

It was observed that, by using the NSUR approach, the pre-
dictive accuracy and ability of the major component models
(crown and AGB models) improved significantly when com-
pared to the same component models fitted independently.
This is because the data were consistent with the restrictions
and because the models fitted as well with the restriction im-
posed, as revealed by the t-test results for the restriction im-
posed on NSUR (p value ≈ 1). However, Nord-Larsen et al.
(2017) observed a decline in predictive accuracy and in-
creasedmodel bias when using the NSUR approach to achieve

additivity. On the other hand, in this study, no significant
differences were observed between the simultaneously and
independently fitted minor component models (stem, foliage
and branches) with regard to predictive accuracy and ability.
This is in line with the findings by Sanquetta et al. (2015).

When using the independently fitted models to the testing
data, it was observed unexpectedly that, for trees with RCD <
3, the predicted branches biomass was larger than the predict-
ed crown biomass, and AGB. As maintained by Parresol
(2001), if one component (e.g. branches) is part of another
component (e.g. crown, AGB), it is logical to expect the esti-
mate of the part not to exceed that of the whole. This incon-
sistency was due to violation of the property of additivity. In
fact, this inconsistency was not observed when using simulta-
neously fitted models (i.e. taking into consideration the prop-
erty of additivity).

Carbon Stocks

The estimates of C stored in AGB (4.59 Mg ha – 1) are well
below the estimates of other mangrove forests of
Mozambique: in the Sofala Bay (Sitoe et al. 2014), and within

Table 6 Fit statistics and predictive ability of simultaneously fitted allometric biomass models

Tree component Model form AIC FI CVr [%] Mr [%] MPE

Stem Ŷ =α1RCD
β1 883.43 18.33 28.98 – 1.40ns 3.27

Foliage Ŷ =α2RCD
β2Hγ2 106.74 0.93 24.13 – 3.50ns 0.60

Branches Ŷ =α3RCD
β3CDγ3 588.81 17.31 17.05 – 1.29ns 2.30

Crown Ŷ =α2RCD
β2 Hγ2+ α3RCD

β3CDγ3 685.97 24.54 14.22 – 0.22ns 2.00

Shoot system Ŷ =α1RCD
β1+ α2RCD

β2Hγ2 +α3RCD
β3CDγ3 1079.03 93.91 17.48 – 1.00ns 4.62

Table 7 Validation of independently and simultaneously fitted models

Tree component Bias [%] V p
value

Independentely
fitted models

Stemi – 2.11 1675 0.12

Foliagei – 1.19 1625 0.20

Branchesi 0.08 1471 0.65

Crowni – 0.41 1427 0.83

AGBi – 1.96 1376 0.95

Simultaneously
fitted models

Stems – 2.96 1609 0.23

Foliages – 1.77 1573 0.32

Branchess 0.45 1501 0.54

Crowns – 0.11 1472 0.65

AGBs – 1.74 1479 0.62

Subscripts i and s indicate predicted biomass using independently and
simultaneously fitted models, respectively. V is the Wilcoxon statistic

Table 8 Person’s correlation test of significance between predicted and
observed biomass

Observed vs. predicted biomass Pearson’s correlation test

r p value

Stemo × Stemi 0.94 0.00

Foliageo × Foliagei 0.94 0.00

Brancheso × Branchesi 0.86 0.00

Crowno × Crowni 0.90 0.00

AGBo ×AGBi 0.94 0.00

Stemo × Stems 0.94 0.00

Foliageo × Foliages 0.94 0.00

Brancheso × Branchess 0.86 0.00

Crowno × Crowns 0.98 0.00

AGBo ×AGBs 0.97 0.00

Subscripts i and s indicate predicted biomass using independently and
simultaneously fitted models, respectively; and subscript o indicate ob-
served biomass

Wetlands



the Zambezi River Delta (Stringer et al. 2015). The estimates
by Sitoe et al. (2014) (28.02 Mg ha – 1) are 6-fold higher than
those from this study; and the estimates by Stringer et al.
(2015) (≈ 147 Mg ha – 1) are 32-fold higher than the current
estimates. The C stocks in AGB of this study are lower be-
cause are from a juvenile secondary mangrove forest com-
posed mainly by seedlings and samplings, where more than
85% of the trees had RCD ≤ 10 cm and heights ≤2 m.
However, the study areas by Sitoe et al. (2014) and Stringer
et al. (2015) are composed by old primary mangroves, with
DBH up to 45 cm, and canopy height up to 29 m, respectively.

Carbon stored in CWD of this study is considerably
smaller than that reported by Meriem et al. (2016) (diam-
eters >10 cm), Adame et al. (2013) (diameters >2.5 cm),
Sitoe et al. (2014) for mangrove forests. This is so be-
cause the study area is located in a peri-urban area of
Maputo city, where approximately 74% of the population
rely on wood fuel to meet its energy needs (Bouwer and
Falcão 2004). Thus CWD are collected and used as fire-
wood by the local community, as collecting wood debris
is not prohibited by the municipality; whereas, most man-
grove forests are mainly located in remote areas (Stringer
et al. 2015), where there is no shortage of firewood, and
thus little pressure for CDW. In fact, it was noted in this
study that 93% of C stored in necromass was from FWD
and litter; CDW accounted with only 7%.

Soil bulk density, SOC content, and SOM content of the
surface soil (0–30 cm) of the current study were in line with
those by Sitoe et al. (2014), Stringer et al. (2015), and
Kristensen et al. (2008). SOC stock accounted for 90% of
ecosystem C stock; this is in accordance with the percentage
of mangrove ecosystem C stock allocated to soils reported by
Adame et al. (2013) (78–99%), Nam et al. (2016) (90.5%),
Sitoe et al. (2014) (73.28%), Donato et al. (2011) (71–98%),
Kauffman et al. (2011) (70%). However, the SOC stock of this
study is likely to be underestimated because it was based on
the surface soil (0–30 cm) only, whereas several studies have
reported that organic-rich soils may extend up to several me-
ters (Donato et al. 2011; Kauffman et al. 2011).

The insignificant amount of C stocks in live and dead
stumps reveals that the conservation status of the mangroves
of western cost of Maputo city is satisfactory, as it reveals the
low intensity of anthropogenic disturbances.

Conclusion

This study was aimed to fit tree component and aboveground
biomass models and estimate the C stored in biomass,
necromass and in the soil of a juvenile secondary Mangrove
forest, composed mainly by seedlings and saplings. Besides
the advantage of enforcing the property of additivity, the
models fitted simultaneously using NSUR approach were,
overall, superior in terms of predictive accuracy and ability
compared to those fitted independently. The developed bio-
mass models are a significant contribution to the available
published models, especially for juvenile mangrove trees
(seedling and sapling) which are lacking in the literature and
yet required for increasing of young successional mangrove
forests as result of disturbances. The ecosystem C stock was
estimated at 48 Mg ha−1, of which 90% was from the surface
soil, 9.6% from live AGB, and 0.50% from necromass. Of the
C stored in live AGB (4.56 Mg ha−1), 57, 32, and 11% were
allocated to stem, branches, and foliage, respectively; and
93% of C stored in necromass was from FWD and litter.
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